

EIZO Rugged Solutions

Formerly Tech Source

Jumping Hurdles

High Expectations in a Low Power Environment

Christopher Fadeley Software Engineering Manager EIZO Rugged Solutions

Biggest Challenges

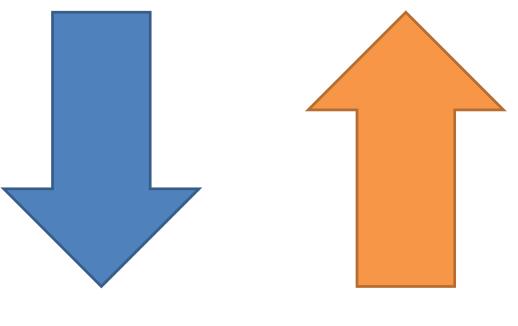
- Embedded/Rugged Environment
 - High performance expectations
 - Cooling in conduction cooled environments
 - Bandwidth limitations
 - Customization!

Desktop vs Embedded Environment

• Power Consumption of GPU

Environment	Form Factor	Max Power Usage
Desktop	PCI-e	150-250W
Embedded	VPX	40-100W
Embedded	XMC	20-45W

Clocks


Environment	Form Factor	GPU Clock Speed
Desktop	PCI-e	1000-1500Mhz
Embedded	VPX	600-1000Mhz
Embedded	XMC	400-600Mhz

Increasing Throughput

• Only options:

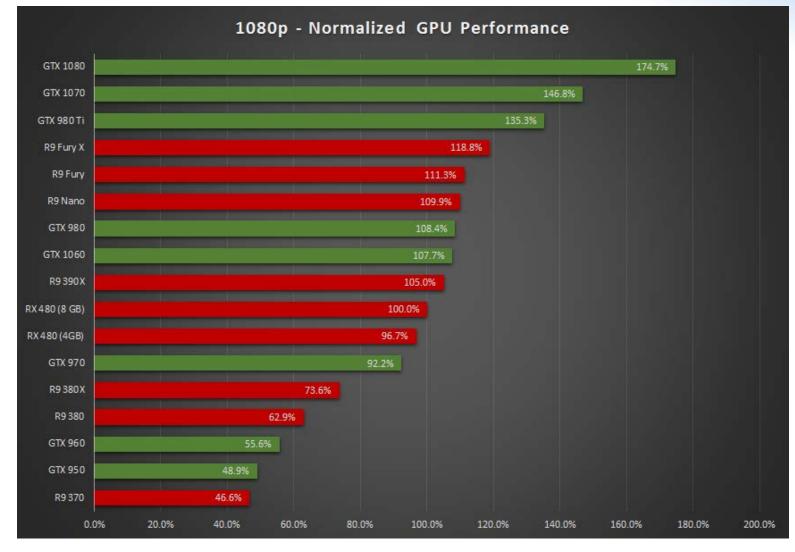
Thermal Management

Increase Performance per Watt

Handling Heat

- Conflict: power requirements vs thermal management.
- Heatsink design
 - Composition of Material
 - Thermal efficiency
- Schematic and Layout Design
 - Part selection
 - Placement of parts
 - Heat efficiency in layout

Performance

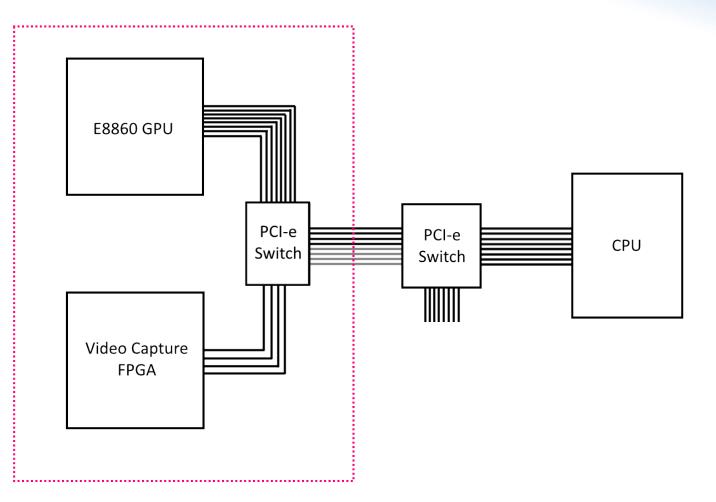

- Latest Technologies
- Customizations
 - BIOS
 - Software
 - Clocks
 - Alarm Temperatures

Formerly Tech Source

Performance

https://www.reddit.com/r/Amd/comments/4tshf9/i_graphed_normalized_benchmark_data_as_well_as/

Bandwidth


- Customers expect to be able to handle multiple high definition video feeds.
 - Raw and encoded
 - Limited network bandwidth and/or stability
 - PCI-e bandwidth

• PCI-e lane availability

Environment	PCI-e Lanes	
Desktop	16x	8x + 8x
Embedded	8x	4x + 4x

- PCI-e Generation Support
 - Support newer generations as video data becomes larger

PCI-e Generation	1x Lanes	4x Lanes	8x Lanes	16x Lanes
1.0	250 MB/s	1 GB/s	2 GB/s	4 GB/s
2.0	500 MB/s	2 GB/s	4 GB/s	8 GB/s
3.0	984.6 MB/s	3.94 GB/s	7.9 GB/s	15.8 GB/s
4.0	1969 MB/s	7.9 GB/s	15.8 GB/s	31.5 GB/s

Video Size	1x Captures	2x Captures	4x Captures
720p60	211 MB/s	422MB/s	844 MB/s
1080p30	237.5 MB/s	475 MB/s	950 MB/s
1080p60	475 MB/s	950 MB/s	1.9 GB/s
2160p60	2 GB/s	4 GB/s	8 GB/s

- PCI-e Generation Support
 - Support newer generations as video data becomes larger

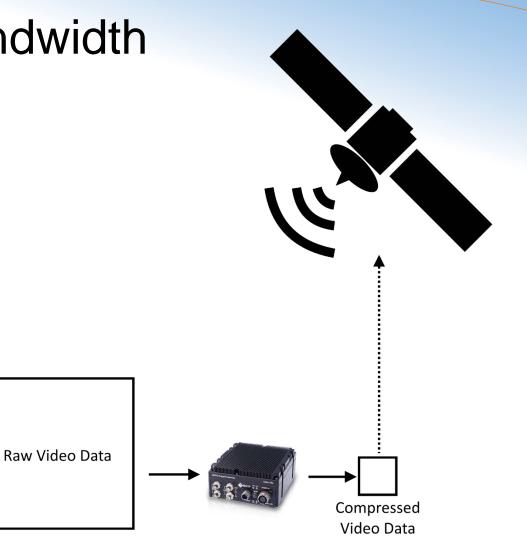
PCI-e Generation	1x Lanes	4x Lanes	8x Lanes	16x Lanes
1.0	250 MB/s	1 GB/s	2 GB/s	4 GB/s
2.0	500 MB/s	2 GB/s	4 GB/s	8 GB/s
3.0	984.6 MB/s	3.94 GB/s	7.9 GB/s	15.8 GB/s
4.0	1969 MB/s	7.9 GB/s	15.8 GB/s	31.5 GB/s

Video Size	1x Captures	2x Captures	4x Captures
720p60	211 MB/s	422MB/s	844 MB/s
1080p30	237.5 MB/s	475 MB/s	950 MB/s
1080p60	475 MB/s	950 MB/s	1.9 GB/s
2160p60	2 GB/s	4 GB/s	8 GB/s

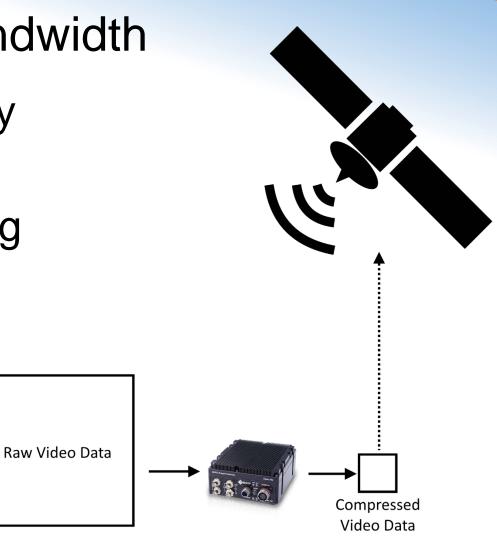
- PCI-e Generation Support
 - Support newer generations as video data becomes larger

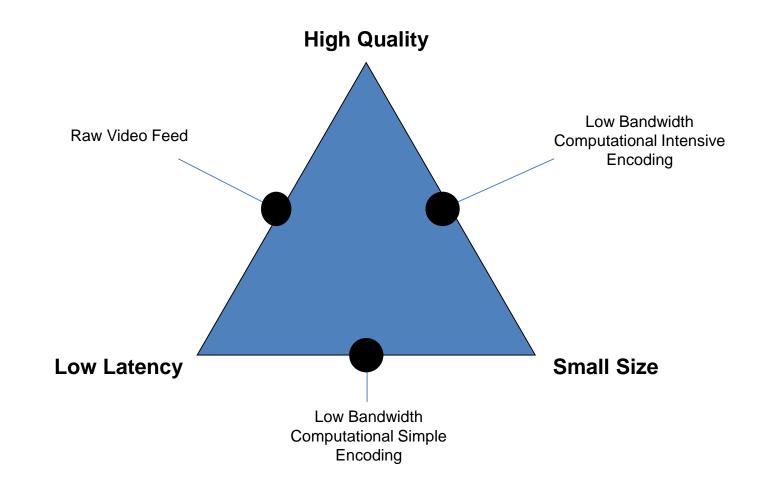
PCI-e Generation	1x Lanes	4x Lanes	8x Lanes	16x Lanes
1.0	250 MB/s	1 GB/s	2 GB/s	4 GB/s
2.0	500 MB/s	2 GB/s	4 GB/s	8 GB/s
3.0	984.6 MB/s	3.94 GB/s	7.9 GB/s	15.8 GB/s
4.0	1969 MB/s	7.9 GB/s	15.8 GB/s	31.5 GB/s

Video Size	1x Captures	2x Captures	4x Captures
720p60	211 MB/s	422MB/s	844 MB/s
1080p30	237.5 MB/s	475 MB/s	950 MB/s
1080p60	475 MB/s	950 MB/s	1.9 GB/s
2160p60	2 GB/s	4 GB/s	8 GB/s


- CPU Load
 - CPU may have to perform memcpys of DMA-ed data
 - Additional CPU tasks:
 - Additional programs
 - Encoding/Recording
- Direct to GPU Memory

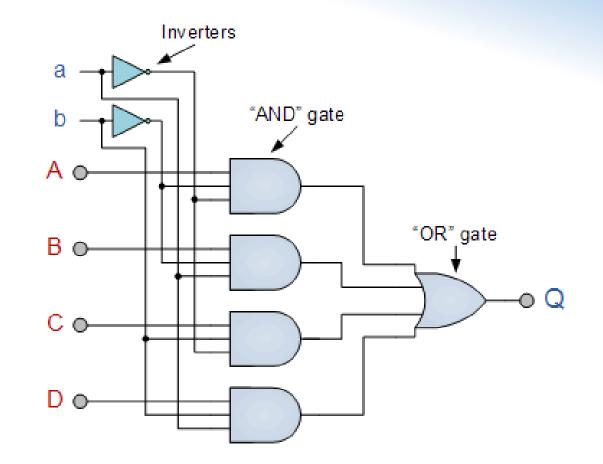
Network Bandwidth


- Network Bandwidth
 - <10Mb/s total available</p>
 - Even less dedicated per stream
- Raw 1920x1080@60fps SDI
 - 1800 Mb/s

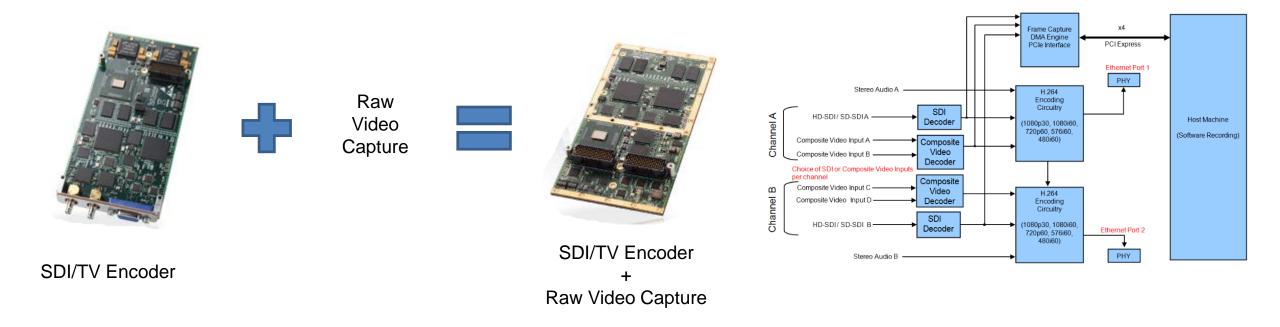

Network Bandwidth

- Latest Compression Technology
 - H.265/HEVC
- Advanced Chroma Subsampling
- Hardware Resizer
- Framerate Dropping
- Motion Filters

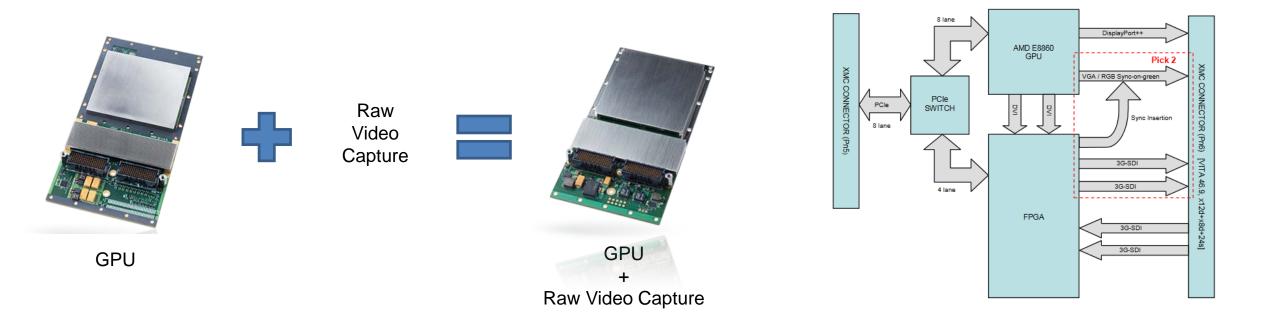
Network Bandwidth


Customer Relationship

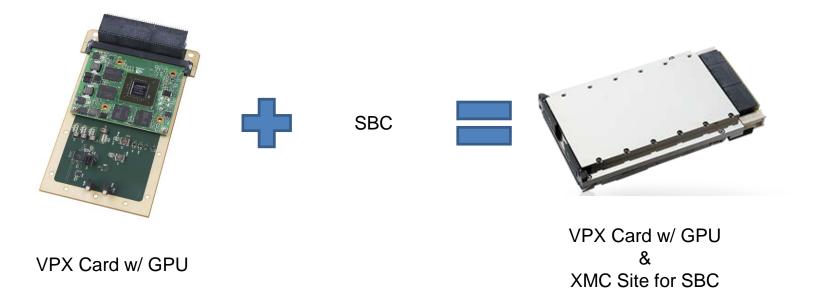
- Work with end customers and integrators before and after purchase.
- Business relationships are as important as engineering proficiency.



- Create building blocks
 - Encoders
 - Raw Video Capture Cards
 - GPUs



- Merging Hardware:
 - Encoder + Raw Capture



- Merging Hardware:
 - Raw Capture + GPU

- Merging Hardware:
 - SBC + GPU

- Challenges
 - Additional functionality == More heat
 - Shared PCI-e bus
 - Limited size
 - Software Support

- Hundreds of different inputs
 and output combinations
- Inputs:
 - Computer
 - DisplayPort
 - VGA
 - HDMI
 - DVI
 - Camera Source
 - SD/HD/3G/6G SDI
 - NTSC
 - PAL
 - SECAM
 - STANAG Variants
 - ARINC 818
 - HDMI

- Outputs
 - To a monitor
 - DisplayPort
 - VGA
 - HDMI
 - DVI
 - SD/HD/3G/6G SDI
 - NTSC
 - PAL
 - SECAM
 - STANAG Variants
 - ARINC 818

- Platform
 - 3U-VPX
 - 6U-VPX
 - XMC
 - PCI-e
 - Conduction Cooled
 - Front I/O
 - Rear I/O

- Hard Truth:
 - There is no possible way to support everything on a single board
 - But, there is an art of supporting immediate needs while not preventing potential future needs

- Modularize Externally
 - Dongles
 - Converters
- Modularize Internally
 - Move towards FPGAs instead of ICs

- Mux & Modularize Connectors
 - BNC connectors used for both TV & SDI
 - Connectors isolated from processing

Thank You